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Full energy expression of a uniaxial nematic phase with spatially dependent density
and order parameters: From microscopic to macroscopic theory

V. M. Pergamenshchik* and S. B. Chernyshuk
Institute of Physics, prospect Nauki 46, Kiev 03650, Ukraine

~Received 19 April 2002; revised manuscript received 17 July 2002; published 26 November 2002!

We present a microscopic derivation of the full macroscopic energy expression of a spatially bounded
uniaxial nematic phase. The surface is described by spatial variations of the density and scalar order parameters
of all even orders. The method developed in the paper allowed us to unambiguously separate the surface elastic
K24 and K13 terms and isotropic and anisotropic surface tension~anchoring!. The full energy expression
incorporating variations of the director, scalar order parameters, and density is obtained. The macroscopic
coefficients are derived in terms of the isotropic and anisotropic fractions of the microscopic intermolecular
interaction. An important physical consequence of the obtained formulas, in particular, is that the observed
considerable differenceK332K11 between the bend and splay elastic constants unambiguously indicates that~i!
the intermolecular interaction has a large anisotropic fraction, and thus, the effective constantK13 and intrinsic
anchoring are considerable;~ii ! at least some scalar order parameters of order four and higher are essentially
nonzero. Relation of the developed theory with the Nehring-Saupe theory and Landau–de Gennes approach is
considered.

DOI: 10.1103/PhysRevE.66.051712 PACS number~s!: 61.30.Gd, 64.70.Md
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I. INTRODUCTION

In spite of a considerable success in understanding c
plicated surface phenomena in a nematic liquid crystal~LC!
~see reviews@1–5#!, the studies of the recent decade ha
also revealed fundamental difficulties related to their inc
poration and interpretation. Developing a consistent the
of surface phenomena requires the most general microsc
consideration of a uniaxial nematic phase. In particular,
theory has a connection to the Landau–de Gennes the
Indeed, as the surface is represented by some surface
where both the molecular density and scalar order parame
undergo spatial variations, a consistent approach has to
corporate not only director, but also the density and sc
order parameters@6#. Below we describe the current state
the problem concerning surface effects and other gen
problems of the theory of a nematic LC.

The two basic approaches in the physics of a nematic
are the Nehring-Saupe theory and the Landau–de Ge
theory. In the Nehring-Saupe theory@7#, the nematic phase i
described by the directorn„x… alone. The director deforma
tions associated with director derivatives]n are assumed to
be weak,l M]n!1, wherel M is the molecular length. The
interaction between two pointsx andx8 with the directorn
andn8 is described by a functionG(n,n8) represented in the
form G(n,n8)5DG(n,n8)1G(n,n), where

DG~n,n8!5G~n,n8!2G~n,n!. ~1!

The surface is, however, missing in this approach sinc
essentially presupposes that the local symmetry in the vi
ity of any spatial point inside the nematic body is thesym-
metry of infinite nematic medium. By virtue of this symme-
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try, on spatial integration the termG(n,n) gives no director-
dependent term, whileDG(n,n8) results in elastic terms
quadratic inl m]n.

However, the surface elastic terms are sensitive to va
tion of the density and scalar order parameter@11# in the
surface layer and thus cannot be considered in the scop
the Nehring-Saupe approach. In a spatially restricted bo
both DG(n,n8) and G(n,n) result in additional director-
dependent energy terms. The kernelDG(n,n8) was shown to
produce an elastic termF1 linear in ]n whose density van-
ishes in the bulk@8–10#. This term depends on the structu
of a surface layer@11#. Moreover, the full expression fo
surface elastic terms linear in]n cannot be found by consid
ering the kernelDG(n,n8) alone as the ‘‘nondeformational,
the so-called homogeneous kernelG(n,n) also contributes to
it @12,13#. However, the total elastic contribution ofG(n,n)
is not derived.

In spite of its simple form, the homogeneous kernel p
duces serious theoretical problems. It is known to contrib
to the surface elastic terms, isotropic (n-independent! surface
tension, anchoring~anisotropic, n-dependent surface ten
sion!, and the bulkn-independent term. However, so fa
these contributions have not been unambiguously separ
from one another even in the simplified case when spa
inhomogeneity of the surface layer is disregarded. As a
sult, there are no full expressions for the surface ela
terms, no explicit local formulas~i.e., in form of an integral
converging in the surface layer! for the anchoring and sur
face tension. This problem is solved in the present pape

In a nematic phase, the effective pairwise poten
G(n,n8) depends on the modulusr of the separation vecto
r5x82x and threen-dependent scalars: (n"n8), (n"r ), and
(n8•r ). Then, in general, one has

G~n,n8!5Gi@~n"n8!,r #1eGa@~n"n8!,~n"r !,~n8•r !,r #,
~2!

whereGi is the isotropic fraction~does not depend onr … and
©2002 The American Physical Society12-1
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Ga is the anisotropic fraction of the interaction potential;e is
a dimensionless coefficient showing relative magnitudes
the two fractions. This separation is essential asGi andGa
lead to qualitatively different effects. In particular,Ga alone
gives rise to theK13 term and intrinsic anchoring~i.e., an-
choring induced by the interaction between nematogen m
ecules!. Thus, if e50, then no problems associated with t
spatial boundedness arise.

The standard idea is thate is of the order of 1: example
are the induced-dipole induced-dipole, and Gay-Berne po
tial. In this and in a wider physical context, it would b
highly desirable to get an independent indication as to h
large an anisotropic fraction of the intermolecular poten
can be. The hope to get such information has driven u
incorporating the scalar order parameters of all orders. T
proved to be fruitful: the reliably observed differenceK33
2K11 between the bend and splay elastic constants is fo
to be proportional toe and occurs only for nonzero scala
order parameters of orders higher than two. SinceK332K11
is considerable in known nematic LCs, this shows that
anisotropic interaction in nematogens is appreciable, and
problem of surface-induced elastic terms and intrinsic
choring is indeed physically meaningful and practically im
portant.

The phenomenological Landau–de Gennes theory con
ers smooth variations ofn and the single scalar order param
eter s2. In this paper we develop a microscopic theory th
along with smooth director variations incorporates bo
smooth and jumplike variations of the density and sca
order parameters of all even orders. As a result, we ob
microscopic formulas for all constants entering the mac
scopic theory. In particular, the results throw the light on
origin of prediction of the Landau–de Gennes approach
the differenceK332K11 does not appear in the orders2

2 ~for
the most recent publications, see Refs.@14,15#!. It is also
shown why the term linear ins2, which can be, in principle,
introduced in the Landau–de Gennes theory@14#, does not
actually appear.

In this paper we will be following the approach of Re
@11# which considers a spatially restricted body and can
generalized as to incorporate all the order parameters
density. Another advantage of this approach is that, base
exploiting the inherent structure and symmetry of the theo
it drastically simplifies finding general relations between d
ferent quantities making specific calculations of no need
all. So are the results of this paper: they are obtained
general relations using known results of the Nehring-Sa
theory and the simple form@11# of the so-calledK13 cancel-
lation. Separating different energy terms from each othe
achieved by means ofD method which is developed in thi
paper and, similar to the approach of Ref.@11#, does not
involve specific calculations.

The paper is organized as following. In Sec. II, the ge
eral form of the effective pairwise potential is obtained fro
the microscopic energy expression and some formulas o
Nehring-Saupe theory employed later on are given. In S
III, the D method is introduced which allows for separati
the elastic, anchoring, and other energy contributions of
pairwise potential of Sec. II, and general expressions
05171
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these terms are derived. Section IV presents the total exp
sions for different energy terms. Section V is devoted
establishing a relation between the differenceK332K11, the
form of the intermolecular potential, and the scalar ord
parameters. Section VI gives a brief resume of the obtai
results.

II. GENERAL FORMULAS

A. The energy of pairwise interaction in a uniaxial
nematic body

Here we incorporate spatial variations of the densityr
and scalar order parameterssl in the macroscopic approac
neglecting biaxiality. For brevity, we denote the function o
primed argument by the function with prime. Then the e
ergy of a pairwise interaction of particles with orientation
coordinatesv and spatial coordinatesx has the form

E5
1

2E dx dx8E dv dv8 gwg8, ~3!

where g5g(x,v) is the one-particle distribution function
w5Ug2, where U5U@v •v8,(r •v)(r •v8),r # is the mi-
croscopic pairwise interaction potential, andg2 is the pair
correlation function that can explicitly depend onx and x8
through the functions r, r8, h and h8, i.e., g2
5g2@vv8,(r •v)(r •v8),r ,x,x8#. Both U andg2 are invari-
ant under simultaneous permutations ofv andv8, andx and
x8.

In a uniaxial phaseg5g(n•v,x… that can be expanded i
the even order Legendre polynomialsPl ,

g(n•v,x…Ä
r~x!

4p
@11~2l 11!sl~x…Pl~n•v!#, ~4!

where the summation over repeated indices is implied. T
function sl(x… is considered as thel-order scalar order pa
rameter, l 52,4, . . . . Since Pl(n•v) contains the
(n•v)-independent constantPl(0), it is convenient to intro-
duce the (n•v)-dependent partP̃l(n•v) of Pl(n•v) and
the l-dependent constantpl ,

P̃l~n•v!5~2l 11!@Pl~n•v!2Pl~0!#, ~5!

pl5
1

4pE dv P̃l~n•v!52~2l 11!Pl~0!. ~6!

Then, substituting Eq.~4! into Eq. ~3!, one has

E5I 1FD1F0,11F0,2, ~7!

where

I 5
1

2E dx dx8 rr8~122plsl1plpl 8slsl 8
8 !^w&, ~8!

FD5
1

2E dx dx8 rr8slsl 8
8 DGll 8 , ~9!

F0,15
1

2E dx dx8 rr8slsl 8
8 @Gll 8~n,n!22pl 8Gl #, ~10!
2-2
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F0,25E dx dx8 rr8slGl . ~11!

Here ^•••&51/(4p)2*dvdv8 . . . , and thekernels have
the form

Gll 8~n,n8!5^P̃l~n•v!wP̃l 8~n8 •v8!&, ~12!

DGll 8~n,n8!5Gll 8~n,n8!2Gll 8~n,n!, ~13!

Gl~n,r !5^P̃l~n•v!w&. ~14!

The explicit symmetric dependence onx andx8 is not indi-
cated here for simplicity. The kernelGl appeared first in Ref
@11#. Separating isotropic partwi and anisotropic partwa of
the effective interactionw and the kernels~12! and~14!, one
has

w5wi~v•v8,r !1ewa@~v•v8!,~r •v!~r •v8!,r #,

Gll 8~n,n8,r !5Gll 8,i„$wi%u~n"n8!,r …

1eGll 8,a„$wa%u~n"n8!,~n"r !,~n8"r !,r …,

~15!

Gl~n,r !5Gl ,i~$wi%ur !1eGl ,a„$wa%u„n"r …,r …,

where the curly brackets imply a functional dependence
the argument. Note, that in Eq.~3! the integration domains
over bothx andx8 are not indicated which implies theunre-
stricted space R3. The actual restriction of the integration t
the body volumeV and the presence of a surface and defe
are related to the spatial behavior ofr andsl . The densityr
does not vanish only inside the body, forxPV, so that the
integration is cut forx¹V or, equivalently, forxPR3\V ~the
total three-dimensional space minus the volume!. The sur-
face S can be naturally associated with the layer where
density varies from its bulk value to zero. The order para
eterssl vanish outside a nematic phase thus indicating b
the surface and the space occupied by a nematic phase

Our task is to calculate elastic, anchoring, and all ot
contributions to the total energyE from the integrals~8!–
~11!. Before performing this, we will briefly give the mai
results of the elastic theory of an unrestricted nematic b
in the form instructive to our following consideration.

B. Main results of the elasticity theory for an unrestricted
nematic body „Nehring-Saupe theory…

The Nehring-Saupe theory is essentially the theory of
unrestricted body. It considers the energy of pairwise in
action in the form

ENS5
1

2EV
dxE dx8@DG~n,n8!1G~n,n!#,

whereDG is defined in Eq.~1!. The integration domain ove
x8 is the unrestricted space R3 rather than the volume V.
This implies that the symmetry in the vicinity of each pointx
is the symmetry of infinite medium, and thus the boundary
05171
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missing. For this reason, the only director-dependent con
bution toENS comes from the kernelDG. Indeed, the inte-
gral *dx8 G(n,n)5*dr G(n,n) is an n-independent con-
stant as the scalar (nn)51 is the only one composed ofn.

In order to obtain the elastic free energy~FE! in a local
form the pairwise potential is expanded in a power series
the componentsDni(x,x8)5ni82ni of the director rotation
vector up to the second order; the differenceDni is in turn
expanded in a power series of the vectorDx
[r : Dni(x8,x).r j] jni1

1
2 r j r k] jk

2 ni8 . The result is the
Nehring-Saupe elastic FE densityf NS in the form

f NS5
1

2E dr DG~n,n8! ~16!

5 1
2 ~K11 f 111K22 f 221K33 f 33!2K24 f 241K13 f 13

with the standard infinite medium quadratic FE termsf ab
given by the formulas@7#

f 115~“•n!2, f 225~n•“3n!2,

f 335~n3“3n!2, ~17!

f 245“•f24, f 135“•f13,

where, for the later convenience, we introduced the vect

f245n~“•n!2„n•“)n, ~18!

f135n~“•n!.

The five elastic constantsKab can be expressed in term
of the four integralsKaa

(0) , a51, 2, 3, andK13 @7#,

K115K11
(0)22K13, K335K33

(0)12K13, ~19!

K225K22
(0) ,

K245~K11
(0)1K22!/4. ~20!

We will only need the formula forK13, i.e.,

K135
e

2E dr r 1r 3~]Ga /]n18!n85n5(0,0,1). ~21!

It is important that the source ofK13 is solely the anisotropic
fraction ofG @as (]Gi /]n18)n85n}n150], while Kaa

(0) comes
from both fractions@7#.

We will also need some properties of the term in the e
pansion ofDG which is linear inDni . First, it was shown in
Ref. @11# that the kernelDG and the antisymmetric part of it
anisotropic fractionDGa,25 1

2 e@DGa(n,n8)2DGa(n8,n)#
produce the same contribution to this linear term. Seco
the part of this term

F15
1

2E dr
]DG

]ni8
r j] jni , ~22!
2-3
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linear in the director derivatives, identically vanishes as
integral is overR3. We will show that in the presence of
surface both integrals*dr G(n,n) and F1 produce elastic
terms linear in the director derivatives, and the first one
addition, results in a standard surface tension and ancho

III. SEPARATING DIFFERENT ENERGY TERMS IN
INTEGRALS „8…–„11…: THE D METHOD

A. The D method

The differenceDG in the Nehring-Saupe calculations
related to the director rotation between two spatial poi
separated byDx[r and thus is associated with the direct
derivatives and elasticity. In a homogeneous body, there
no other nonzero variations, but in a body with a surface
defects, the differencesDr5r(x8)2r(x), Dsl5sl(x8)
2sl(x), andDh l5h l(x8)2h l(x), whereh l5rsl , indicate
location thereof. For instance,Dr in the integrand indicates
that this integral gives rise to a surface term as the integr
is nonzero just in the surface layer;DrDG and DhDG in-
dicate a surface elastic term;DrDh andDr2 indicate a sur-
face tension including anchoring; noD indicates a nonelastic
bulk term. This method will enable us to unambiguous
separate all possible energy terms and solve the prob
described in the Introduction.

Obviously,D ’s can enter the integrands of Eqs.~28!–~11!

via the identitiesr8r5r21Drr, h l 8
8 h l5h l 8h l1Dh l 8h l ,

and h l8r5h lr1Dh lr. A more elaborated procedure i
however, required to properly incorporateGll 8 andGl . The
matter is that along with the term independent ofDn, the
function G(n,n) contains elastic terms linear and quadra
in the separation vectorDx]n. As eachD is connected to
some degree of smallness, expressions containingG(n,n)
should be somehow reduced to the form quadratic in
operatorD. This program can be realized by using the fo
mulas

E dx dx8h lDh l 8@Gll 8~n,n…22pl 8Gl # ~23!

52
1

2E dx dx8@2h lDh l 8~DGll 82pl 8DGl !

1Dh lDh l 8„Gll 8~n,n…22pl 8Gl…#,

E dx dx8 Drh lGl52
1

2E dx dx8~h lDrDGl1DrDh lGl !.

~24!

Let us derive the second one. IntroducingGl82Gl , which
coincides with the definition~1! of DG by virtue of Eq.~14!,
and substitutingGl5Gl82DG, one has
05171
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E dx dx8 Drh lGl52E dx dx8 Drh lDGl

1E dx8 dx~2Dr!h l8G

52E dx dx8~h lDrDGl

1Drh lGl1DrDh lGl !,

where we permuted all primed and unprimed quantities, e
ployed the identityh l85Dh l1h l , and changed the integra
tion order. Equation~24! follows directly from the last for-
mula. Derivation of Eq.~23! is similar, with the difference
that the quantityGll 8(n8,n8)2Gll 8(n,n) in the sum overl
and l 8 is equivalent to twiceDGll 8 defined in Eq.~1!. Equa-
tions ~24! and~23! have the desired form as both right-han
sides are quadratic inD.

For an example, let us give the form of the functio
Dr(x,x8… in quite a general case when the density at
surfaceS has first a jump from zero torS , and then slowly
goes fromrS to the bulk valuerb , i.e., r(x)5rS1 r̃(x)
where r̃(x)→rb2rS in the bulk, andu l M]r̃u!1. The anti-
symmetric functionDr(x,x8) has the form

Dr~x,x8!55
r~x8!5rS1 r̃~x8!, x8PV,x¹V;

2r~x!52rS2 r̃~x!, xPV,x8¹V;

Dr̃~x8,x!5 r̃~x8!2 r̃~x…, xPV,x8PV;

0, x¹V,x8¹V.
~25!

In the surface layer, the order parametersl and, thus, the
product h l are assumed to behave similarly: in th
body sl(x)5sl ,S1 s̃l(x), h l(x)5h l ,S1h̃ l(x), where h l ,S

5rSsl ,S , h̃ l5 s̃lrS1 r̃sl ,S1 s̃l r̃, and s̃l is a slow function
equal tosl ,b2sl .S in the bulk far from the surface. The ant
symmetric functionsDsl(x,x8) andDh l(x,x8) have the form
similar to Dr(x,x8).

As Dr(x,x8), Eq. ~25!, is nonzero when one of the point
x8 and x is outside the body, the director must be forma
defined outside the volumeV. We will see that the physica
results are independent of the specific form of the direc
extension outside the phase boundary.

B. Separating anchoring, surface tension, and surface elastic
terms in the D method

Above we assumed that integrals overDh lDr and
Dh lDh l 8 , Eqs.~23! and~24!, produce an anchoring and su
face tension and do not produce elastic terms. Actually, h
ever, separation of these three different surface terms is
unsolved problem. Here we show how theD method solves
this problem.

To deal with surface integrals related to a surface ju
r l ,S and/orsl ,S it is convenient to use a local Cartesian re
erence frameOn , (x1,x2 ,z), connected to a pointx on a
surface elementdS and the local outer surface normaln. In
2-4
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On , thez axis is normal todS, directed inward the body, an
has the onset atx; the x1 axis is tangential todS and lies in
the plane made by the normaln and surface directornS„x…
while the x2 axis is normal to this plane:x5(x1,x2 ,z50),
n5(0,0,21), and nS„x…5(n1,0,n3). Clearly, z.0 in the
body andz,0 outside.

Let us calculate a surface tension and anchoring ass
ated to the functionsDhDr defined in Sec. III A~the sub-
scripts l and l 8 may be dropped for simplicity!; the case of
Dh lDh l 8 is similar. One has

G„n~z!….GS1zdGS, ~26!

whereGS5G(nS), dGS5(]G/]ni)n5nS
(]3ni)z50, and the

dependence onz,r 1 ,r 2 is omitted for brevity. Besides a su
face tension, on thez integration Eq.~26! can also give non-
zero terms with the normal-to-surface director derivativ
@12,13#. The advantage of ourD method is that they are
already separated from the anchoring terms: we will n
show that the integral contribution ofzdGS is zero.

Consider the integral under question in Eq.~24! and di-
vide the integration domain as follows@see Eq.~25!#:

I S5E dxE dx8 DhDrG

5E
V
dxE

V
dx8 Dh̃Dr̃GS1hSrSE

V
dxE

R3\V
dx8 G

1hSrSE
R3\V

dxE
V
dx8 G. ~27!

In the first integral we neglectedzdGS;Dh̃Dr̃Dn; in the
remaining two integrals, the smooth functions with a til
are neglected compared to the surface jumphSrS which
dominates whenx8 or x is outside the body, Eq.~25!. It is not
difficult to show that the contributions of the derivative d
pendent termzdGS to the last two integrals cancel eac
other. To this end, we first note that only those terms indGS ,
which are even inr 3, do not vanish after integration over th
surface layer. Indeed, in the reference frameOn bothGS and
dGS are the sums of termsr 3

even power3r 1
even power and

r 3
odd power3r 1

odd power. The later terms vanish after integratio
over the spatially unrestricted tangential componentr 1.
Hence one can considerGS and dGS to be functions ofr 3

2

5(z82z)2, n3
2, and n1

2512n3
2. Then, under the variable

changez852z8, z52z, the second integral overzdGS
immediately reduces to minus third one. Thus, the ela
term zdGS does give a zero contribution to integral~27!
which justifies theD method: those integrals, whose int
grands containDh lDr andDh lDh l 8 , up to negligible terms
give rise to the anchoring and surface tension alone. Be
we derive general formulas for these nondeformational te
for a given kernelG.

In the context of the above consideration, integral~27!
reduces to
05171
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I S5E
V
dxE

Vr

dr 8 Dh̃Dr̃GS12hSrSE
V
dxE

R3\V
dx8 GS .

~28!

The first integral, which obviously represents the surface t

sion S̃ and anchoringÃ of a pure diffusive surface, can b
further simplified. By virtue of the definition ofr̃(z) and
h̃(z), Eq. ~25!, its integrand vanishes onSand remains very
small at distances; l M from S. Then the principal contribu-
tion to the integral overDh̃Dr̃ comes from the part of the
surface layer not very close toS so that ther-integration
domain can be extended toR3, and this integral reduces t
the form

E
V
dx ] ih] jrE dr r i r jGS . ~29!

The tensor structure of ther integral allows one to write

E dr r i r jGS5d1d i j 1d2ni ,Snj ,S . ~30!

Since the constantsd1 and d2 are director independent, w
choose the reference frame wheren5(0,0,1). Then fori
5 j 51 one obtains

d15
1

2E dr r 1
2GunS5(0,0,1). ~31!

d2 can be calculated by settingi 51, j 53, and differen-
tiating both sides of Eq.~30! with respect ton1,

d25H K13
l ,G5Gl ,

K13
l l 81K13

l 8 l ,G5Gll 8 ,
~32!

whereK13
l l 8 andK13

l are the Nehring-Saupe constant~21! for
kernelsGl andGll 8 , respectively.

From Eq.~29! we see that for a pure diffusive surface,d1

determines the isotropic tensionS̃G while d2 determines the
anchoringÃG ,

S̃G52d1$G%E dx~“r!•~“h!, ~33!

ÃG52d2$eGa%E dx~nS•“r!~nS•“h!, ~34!

where the functional dependence ofd1 andd2 on kernelG is
indicated. In these equations“r5“ r̃ and“h5“h̃ since
the jumps are separated and do not contribute to differen
tion. Note that whereas the constantd1, Eq. ~31!, comes
from both isotropic and anisotropic fractions ofG, the con-
stant d2, Eq. ~32!, coincides with the constantK13 whose
source is the anisotropic fraction alone:d2}e.

The second term in Eq.~28! represents the anchoringAJ
and surface tensionSJ at sharp surfaces with a nonzero jum
(rsl)S . An isotropic kernelGi(n"n) does not depend on th
2-5
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director as (n"n)51. In contrast, the integral over an anis
tropic kernelGa(n,n) is a function of (n•nS)2 which reduces
to n3

2 in On . However, as in the case of a diffusive surfac
the kernel Ga,S also produces some director-independ
term contributing to the isotropic tension. Namely, tho
terms in Ga,S that do not containn3

2, cannot contribute to
anchoring. Thesen3-independent terms can be obtained fro
Ga,S , in which n1

2512n3
2 and n250, by settingn350.

Therefore, the surface tension results fromGa,S(n350)
5Ga,S@nS5(1,0,0)# while the anchoring results from th
rest ofGa,S , i.e., fromGa,S2Ga,S(n350). Using this recipe
and z integrating by parts the second term in Eq.~27!, one
obtains the surface tensionSG and anchoringAG induced by
a surface jump ofrS andhS ,

SG,J52rShSE dSE
0

`

dz z

3E
2`

`

dr1 dr2@Gi ,S1eGa,S~n350!# r 352z ,

~35!

AG,J52rShSeE dSE
0

`

dz z

3E
2`

`

dr1 dr2@Ga,S2Ga,S~n350!# r 352z ,

wheren1
2512n3

2 andn250. Note that these integrals con
verge in the surface layer.

C. Calculation of integrals „8…–„11…

The first termI, Eq. ~8!, in the total energy~7! results in
the director-independent bulk term and surface tension,
its calculation is trivial. Further, integral~9! reduces to the
form

FD5
1

2E dx dx8~h lh l 8DGll 81h lDh l 8DGll 8,2!. ~36!

The internal integral in the first term in Eq.~36! is exactly

the Nehring-Saupe densityf NS
ll 8 ~16! for the kernelDGll 8 . In

the second term,DGll 8 is replaced by its antisymmetric pa
DGll 8,2 which is equivalent to neglecting contribution of th
orderr 2(]n)2;Dx2Dn2, Sec. II B. This term reduces to th
form ~22! and can be calculated following the method of R
@11#. Finally, the sum of the two terms in Eq.~36! takes the
form

FD5E dx h lh l 8F1

2
Kaa

l l 8 f aa2
1

4
~K22

l l 81K11
l l 8! f 24G , ~37!

whereKaa
l l 8 are the standard splay, twist, and bend consta

for the kernelDGll 8 . The effect of spatial boundedness o
the elastic density resulting fromDGll 8 is that the constan
K245

1
4 (K221K11

(0)), Eq. ~20!, changes for 1
4 (K221K11),
05171
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while the densityf 13 is absent@9–11#. The total coefficients
K13 andK24 in a restricted nematic body have other sourc
and will be found below.

Applying theD method, the integral~10! can be reduced
to the sum

F0,15
1

2E dx dx8~h lh l 81h lDh l 8!@Gll 8~n,n…22pl 8Gl #.

~38!

The integral overh lh l 8 is n independent and proportiona
to V, Sec. II B, and can be simplified by using formula

E dr Gl5plE dr ^w&. ~39!

The h lDh l 8 term is similar to Eq.~9! considered above an
can be calculated in the same way. This gives

~K13
l l 82pl 8K13

l !E dx h lh l 8~ f 132
1
2 f 24!1S11A1, ~40!

where the isotropic tensionS1 and anchoringA1 can be
found from general formulas~35! by replacingDh lDr with
Dh lDh l 8 andG with (Gll 8À2pl 8Gl).

Integral ~11! can be written as

F0,25E dxE dr FrhGl2
1

2
~Dh lDrGl1h lDrDGl !G .

~41!

Calculating the first term inF0,2 reduces to using formula
~39!. The second term can be obtained from general formu
~35! by settingG5Gl . The third term inF0,2 looks similar
to that withh lDh l 8DGl considered above, however, it ca
not be treated in the same way. The matter is thath l8r, which
now replacesh l8h in the integrand thereof, is not symmetr
~identity ~15! of Ref. @11# breaks!. For this reason we per
formed a direct calculation ofFel,2 assuming thatsl , r, and
h l have finite sharp jumps at the boundary and smooth c
ponents. The smooth components are assumed to ch
very little over the microscopic scale, so that the differenc
Dr̃ andDh̃ can be approximated by the first differentials. A
a result, the third term in Eq.~41! is found to be

K13
l E dx@hr~ f 132

1
2 f 24!1r2~“sl !•~ f132

1
2 f24!#. ~42!

IV. THE FULL ENERGY EXPRESSION

Now we can write down the full energy expression co
lecting the results of the preceding section. The total ene
E is a sum of the director-independent bulk termE0, elastic
termFel containing the director derivatives, isotropic tensi
S, and anchoringA,

E5E01Fel1S1A. ~43!

In this section we consider each term individually.
2-6
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A. Director-independent bulk term E0

The director-independent bulk termE0 has the form

E05
1

2E dx r2~a01a2
l l 8slsl 8!,

a05E dr ^w&, ~44!

a2
l l 85E dr @Gll 8~n,n…2pl 8pl^w&#.

Note that the bulk terms linear ins, though allowed by the
symmetry and present in Eq.~8!, canceled out in the tota
energy as it should be for having the correct nema
isotropic phase transition, and the kernelGl ~14! is essential
for this cancellation. By magnitude order,a0;a2;Kl M

22 .
The bulk nematic phase is possible when the second ter
Eq. ~44! is negative, which imposes certain restrictions
possible nematogenic potentialsw thus providing the selec
tion procedure. As for thes independent term in Eq.~44!, it
can be used for finding the equilibrium distribution of th
density, but this complicated problem lies beyond the task
our paper~e.g., see Ref.@16#!. In our formulas the density
r(x) is to be considered as a known function, and the te
a0r2 gives rise to an unimportant constant.

B. Bulk and surface elastic terms

The elastic free energy is the sum of the termsF̃el that
would be present for no surface jumps, and the jump-indu
termsFel.J , i.e.,

Fel5F̃el1Fel,J . ~45!

This sum can be obtained by summing all the elastic te
obtained above and by part integrating those containing
densitiesf13 and f24. The nonjump term has the form

F̃el5E dxH 1

2
h lh l 8~K11

l l 8 f 111K22
l l 8 f 221K33

l l 8 f 33!

1Fk24
l l 8
“~h lh l 8!1

1

2
K13

l sl“r2G•f24

2@k13
l l 8
“~h lh l 8!1K13

l sl“r2#"f13J , ~46!

where

k24
l l 85

1

4
~K11

l l 81K22
l l 812k13

l l 8!, ~47!

k13
l l 85K13

l l 82pl 8K13
l ,

It consists of the bulk splay, twist, and bend terms q
dratic in the density and order parameters, and the te
nonvanishing in diffusive surface layers which, for obvio
reason, can be referred to as theK24 andK13 terms@see Eqs.
05171
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~17! and~18!#. In contrast to the Landau–de Gennes FE,
constantsKaa$Gll 8% are determined by the Nehring-Saup
formulas which do not implyK115K33. Note, that the terms
linear in the smooth components̃l appear only where the
density is not constant, i.e., at a diffusive surface.

The jump-induced term has the form

Fel,J5E dS@2~k24
l l 8h lh l 81

1
2 K13

l h lr!~n•f24!

1~k13
l l 8h lh l 81K13

l h lr!~n•f13!#, ~48!

wheren is the outer normal toS. The surface integral con
tains hS5rShS and does not vanish only if both the ord
parameter and density have a finite jump.

Usual situation is that the size of a nematic body is mu
larger than the thicknessl S of the surface layer. Then, i
structure of a surface layer is of no interest, one can desc
the observable director far from the surface using the eff
tive FE functional

F̄$n%5F̄el1Ā ~49!

with effective constants that absorb the information of t
surface layer. The effective surface elastic constants ente
F̄el can be obtained by integrating the exact surface ene
densities in Eq.~45! across the surface layer~from z50 to
z5 l S) assuming that the director changes negligibly with
it; as V is much larger than the volume of the surface lay
the effective bulk elastic constants merely take their b
values. As a result, the effective bulk elastic energy o
spatially restricted body is obtained in the form

F̄el5
1

2EV
dx~K̄11 f 111K̄22 f 221K̄33 f 33!

1E dSn•~2K̄24f241K13f13!, ~50!

where the effective elastic constants are given by the follo
ing expressions:

K̄aa5h lbh l 8bKaa
l l 8 , a51,2,3,

K̄245
1

4
~K̄111K̄2212K̄13!, ~51!

K̄135h lbh l 8b~K13
l l 82pl 8K13

l !1h lSrSK13
l 1K13

l E
0

l S
dz sl]zr

2.

Formulas~50! and~51! give the large scale elastic energ
of a spatially restricted body. The difference with th
Nehring-Saupe functionalFNS appears in the values ofK13
andK24, in the surface tension and anchoring terms, and
the effective status ofF̄el . The constantsK̄aa do not depend
on the surface structure, whereasK̄24 and K̄13 do. For an
ideal surface without any smooth component where the b
and surface values ofr ands coincide, and for a pure diffu-
2-7
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sive surface wheresS5rS50, the constantK̄13 is, respec-
tively, given by the following expressions:

K̄13,J5h l ,bh l 8,b~K13
l l 82pl 8K13

l !1sl ,brb
2K13

l ,
~52!

K̃̄135h l ,bh l 8,b~K13
l l 82pl 8K13

l !1K13
l E

0

l S
dz sl]zr

2 .

The last integral can be estimated asK13
l slb^r2&S where

^r2&S;0.5rb
2 is some mean value in the surface layer. T

similar contribution due to the kernelGl(n"r ) was obtained
in Ref. @11#. We see, however, that in line with the numeric
analysis@13#, the full expression for the elastic constantK13
does not reduce to this term alone and contains more co
butions from the apparently ‘‘nonelastic’’ homogeneous k
nels. For instance, the kernelGl gives rise to the two othe
contributions toK13 ~51!, one of which is quadratic in the
order parameters.

The contributionh lbh l 8bK13
l l 8 in K̄13 ~52! is produced by

the homogeneous kernelGll 8(n,n). It coincides with the na-
ive infinite medium Nehring-Saupe constant~21! that disap-
pears in the elastic energy~37! of a spatially restricted body
if just the pure ‘‘elastic’’ kernelsDGll 8 andDGl are consid-
ered. Therefore, the homogeneous kernelGll 8(n,n) restores
the infinite medium contribution to theK13 term.

C. Surface tension and anchoring

The general formulas for the isotropic surface tension
anchoring were obtained in Sec. III B. The total energy of
isotropic surface tension is the sum of the no-jump termS̃

and jump-induced termSJ , i.e., S5S̃1SJ . The diffusive

part S̃ has the form

S̃5
1

2E dx@b0~“r!21b1
l ~“h l !•~“r!

1b2
l l 8~“h l !•~“h l 8!#, ~53!

where

b052
1

2E dr r 1
2^w&,

b1
l 52E dr r 1

2@Gl~n!2pl^w&#n5(0,0,1), ~54!

b2
l l 852

1

2E dr r 1
2@Gll 8~n,n!22pl 8Gl~n…

1plpl 8^w&#n5(0,0,1).

All b’s ;K. The energy~53! can be represented in th
conventional formS̃5*dSs̃ with the surface densitys̃ de-
fined by the expression in the square bracket in Eq.~53! ~in
the reference frameOn ,“ is replaced by]z).
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Similarly, the energy of anchoring is the sum of the no
jump and jump-induced terms, i.e.,A5Ã1AJ . The nonjump
diffusive term has the form

Ã52E dx@K13
l ~nS•“r!~nS•“h l !1k13

l l 8~nS•“h l !

3~nS•“h l 8!#. ~55!

Its conventional form is found to be

Ã5
1

2E dSW~n•n!2, ~56!

W522E
0

l S
dz@K13

l ~]zr!~]zh l !1k13
l l 8~]zh l !~]zh l 8!#.

~57!

A remarkable property of anchoring potential~56! for a pure
diffusive surface is that it has exactly the Rapini-Popou
form and its strengthW is proportional to the constantsK13

l

andk13
l l 8 given in Eq.~47!. Thus, for a diffusive surface the

fact that the constantK13 and intrinsic anchoring are ob
tained due to the same anisotropic interaction is expres
explicitly.

The jump-induced surface nonelastic energy is also a s
of the surface tensionSJ5*dSsJ and anchoring AJ
5*dS fA,J(n•n). In the reference frameOn , the densitysJ
is found to be

sJ52
1

2
rS

2E
0

l S
z dzE

2`

`

dr1 dr2 GS,J~r 352z!,

GS,J5^w&22sl@pl^w&2Gl~n…#n350 ~58!

1slsl 8@plpl 8^w&1Gll 8~n,n!22pl 8Gl~n…#n350 .

f A,J has the form

f A,J„~nS•n!2
…52

1

2
rS

2eE
0

l S
z dz

3E
2`

`

dr1 dr2@GA,J2GA,J~n350!# r 352z ,

~59!

GA,J~n…5$2sl 8Gl ,a1slsl 8@Gll 8,a~n,n!22pl 8Gl ,a#%S .

In contrast to the universal (nS•n)2 form of the anchoring
potential for a diffusive surface, the power of (nS•n)2 in the
jump-induced anchoring potentialf A,J, Eq. ~59!, depends on
the power ofnz in the anisotropic part of the kernelsGll 8 and
Gl .

Equations~53! and~57! show that the surface tension an
anchoring for a diffusive surface are of the orders̃;W
;K13/ l S . At the same time, the jump-induced quantiti
sJ; f A,J;K13/ l M, which is larger by the factorl S / l M . We
see that the anchoring and surface tension depend on
2-8
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structure of the surface layer and, roughly speaking, are
versely proportional to the thicknessl S thereof. Thus, the
anchoring is weaker at a diffusive surface and is stronges
a pure ideal surface with a large jump of the density a
order parameters. At the same time, the effective cons
K̄13, Eq. ~52!, averaged across this layer is practically t
same for any surface~the reason is that theK13 density de-
pends on the first derivative ofr or h whereas the density o
anchoring and surface tension depends on the square of
derivatives, see also Ref.@17#!. The above consideration, i
particular, implies that the effects related to theK24 andK13
terms should be expected in samples with diffusive surfa
Indeed, the size of such samples is determined by the anc
ing extrapolation length@18# that takes macroscopic value
only if the anchoring is weak.

V. MICROSCOPIC ORIGIN OF THE DIFFERENCE
K33ÀK11 AND THE SURFACE PHENOMENA

The Landau–de Gennes theory predicts that, in the o
s2

2, the constantsK11 andK33 are equal which is not in line
both with the numerous experiments and Nehring-Sa
theory. In literature on the Landau–de Gennes theory,
the most recent related papers@14,15# are not an exclusion
the observed differenceK332K11 is attributed to the orders
s2

3 and higher which is not confirmed by the experimen
findings. Our theory enables one to clarify this questi
Moreover, we will see that addressing this problem gives
an important ~and somewhat unexpected! connection be-
tweenK332K11, the amplitudee of the anisotropic fraction
in the intermolecular potential, and values of the high
order scalar order parameters.

We prove the following two assertions. The first one is

K33
225K11

22, ~60!

which means that, for an arbitrary intermolecular potentialw,
restriction of the distribution function to the simplest sca
order parameters2 alone results in the equalityK115K33.
Indeed, as far as the constantsK11 and K33 are concerned
the restriction to l 5 l 852 implies dealing with the
kernel G22(n,n8)5^P̃2wP̃28& where P̃25 15

2 (n•v)2, P̃28
5 15

2 (n8•v)2 @Gl does not contribute toKaa , see Eq.~37!#.
The kernelG22, being quadratic inni andni8 , is a sum of the
following invariants:n-independent constant~function onr ),
(n•n8)2, (n•n8)(n•u)(n8•u), (n•u)21(n8•u)2, and
(n•u)2(n8•u)2. All these invariants result inK335K11
which proves the first assertion~calculation of the constant
is trivial if one uses the well-known formulas expressing t
elastic constants in terms of the powers of the elemen
invariants (n•n8), (n•u), and (n8•u), see Ref.@19#!.

The second assertion is that a pure isotropic interac
w@(v•v8)2k#, k51,2, . . . , cannot give a nonzeroK33
2K11. Indeed, for anyl and l 8, the kernelGll 8 is a sum of
even powers of (n•n8). But the term (n•n8)2k results in
K335K11 for any k, which proves the second assertion.

It follows from the two facts proved above that, as far
the interaction form is concerned, a nonzeroK332K11 is
obtained solely due to an anisotropic interaction that i
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source of the constantK13 and intrinsic anchoring; and, as fa
as the orientational one-particle distribution function is co
cerned, a nonzeroK332K11 is obtained due to the scala
order parameters of the orders higher than 2. This conclu
can be expressed by the following formula:

K332K115e~D24s2s41D44s4
21••• !, ~61!

whereD245K33$Ga,24%2K11$Ga,24%, and so on. This resul
implies that theK24 term is also due to a nonzeroe. Indeed,
it is known that the total elastic coefficient of thek24 terma is
K1122K24 @12,18#. Then Eqs.~51! and~61! show that an-
isotropic potential is a source ofall the sign-indefinite FE
terms: fore50, one hasK135K1122K245L50.

It is known that the Landau–de Gennes theory assu
the order parameter to be of the formQi j 5s2(ninj2

1
3 d i j ),

directly related to the Legendre polynomialP2 @21#. As this
corresponds to incorporating a single-order parameters2, the
formula ~61! shows that prediction of a nonzero differen
K332K11 should not be expected of this approach. Contr
to that, to be consistent, the Landau–de Gennes theorymust
predict equal constantsK33 andK11 as it indeed does in the
order s2

2. This demonstrates a high self-consistency of t
theory in the orders2

2: being pure phenomenological and n
resorting to microscopic formulas, it predictsK115K33 in
accordance with the result of the microscopic theory.
make the picture complete, we note that terms cubic ins2 do
not change the elastic energy. Indeed, the energy, Eq.~3!, is
quadratic in the one-particle distribution function, and th
terms s2

3 come from the entropy functional which i
n-independent.

Now we can answer the question formulated in the Int
duction as to how large the anisotropic interaction in a r
system of nematogenic molecules is and, consequently,
important the elasticK13 term and intrinsic anchoring are
The clear message that reliably observed considerable va
of the differenceK332K11 convey us is that the anisotropi
fraction of the intermolecular potential is of the same ma
nitude as the isotropic one, and hence theK13 elasticity and
intrinsic anchoring are an important integral part of the ph
ics of LCs.

VI. CONCLUSION

A nematic body is not entirely spatially homogeneous:
density and order parameters undergo spatial variation
comparatively small areas of the space. This paper pres
the full energy of such a uniaxial nematic body expressed
terms of the macroscopic order parameters and derived f
the general microscopic formulas. The theory assumes b
smooth and jumplike spatial inhomogeneities.

No usual assumption was made as to which kernels in
pairwise potential give rise to elastic terms and which do n
Instead we developed theD method that allows for an un
ambiguous separation of different macroscopic energy c
tributions, relating them with the spatial variations of th
order parameters. As a result, full expressions for all
elastic terms, including theK13 andK24 terms, were derived
2-9
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The result simplifies calculation of the anchoring potent
reducing it to the procedure similar to the calculation of t
elastic constants.

Incorporating all the scalar order parameters allowed
finding an important relation between the higher-order sc
parameters and the observed differenceK332K11. It indi-
cates that at least somesl with l>4 and the anisotropic par
of the intermolecular interaction must be considerable i
nematic phase. This allowed us to conclude that the ela
K13 term and intrinsic anchoring are an important integ
part of the energy of a nematic phase. The effective const
d

05171
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K̄13 and K̄24 differ from the Nehring-Saupe values for an
surface structure. In contrast to these constants, the stre
of anchoring considerably depends on a surface layer: f
thick diffusive surface layer it can be much smaller than
sharp surfaces. This gives a clue for understanding why
intrinsic anchoring can be weak even if the anisotropic p
of the intermolecular potential is considerable.

Finally, we believe that the approach developed in t
paper can be generalized for derivation of the energy o
biaxial phase in a system of uniaxial molecules from t
microscopic formulas. This task is under way.
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