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Full energy expression of a uniaxial nematic phase with spatially dependent density
and order parameters: From microscopic to macroscopic theory
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We present a microscopic derivation of the full macroscopic energy expression of a spatially bounded
uniaxial nematic phase. The surface is described by spatial variations of the density and scalar order parameters
of all even orders. The method developed in the paper allowed us to unambiguously separate the surface elastic
K,, and K3 terms and isotropic and anisotropic surface teng@ammchoring. The full energy expression
incorporating variations of the director, scalar order parameters, and density is obtained. The macroscopic
coefficients are derived in terms of the isotropic and anisotropic fractions of the microscopic intermolecular
interaction. An important physical consequence of the obtained formulas, in particular, is that the observed
considerable differendés;— K1 between the bend and splay elastic constants unambiguously indicatés that
the intermolecular interaction has a large anisotropic fraction, and thus, the effective céngtandl intrinsic
anchoring are considerabl@i) at least some scalar order parameters of order four and higher are essentially
nonzero. Relation of the developed theory with the Nehring-Saupe theory and Landau—de Gennes approach is

considered.
DOI: 10.1103/PhysReVvE.66.051712 PACS nunier61.30.Gd, 64.70.Md
. INTRODUCTION try, on spatial integration the ter@(n,n) gives no director-

dependent term, whilAG(n,n’) results in elastic terms

In spite of a considerable success in understanding conmguadratic inl ,an.
plicated surface phenomena in a nematic liquid crydt&l) However, the surface elastic terms are sensitive to varia-
(see reviewd1-5]), the studies of the recent decade havetion of the density and scalar order paramdtkt] in the
also revealed fundamental difficulties related to their incor-surface layer and thus cannot be considered in the scope of
poration and interpretation. Developing a consistent theoryhe Nehring-Saupe approach. In a spatially restricted body,
of surface phenomena requires the most general microscop®th AG(n,n") and G(n,n) result in additional director-
consideration of a uniaxial nematic phase. In particular, thélependent energy terms. The kerd@(n,n’) was shown to
theory has a connection to the Landau—de Gennes theorfffoduce an elastic terif; linear in Jn whose density van-
Indeed, as the surface is represented by some surface layéhes in the bulk8—10]. This term depends on the structure
where both the molecular density and scalar order parametef§ @ surface layef11]. Moreover, the full expression for
undergo spatial variations, a consistent approach has to igurface elastic terms linear im cannot be found by consid-
corporate not only director, but also the density and scalaf"ing the kerneG(n,n’) alone as the “nondeformational,”
order parameter6]. Below we describe the current state of the so-called homogeneous kerfiin,n) also contributes to
the problem concerning surface effects and other generdli [12,13. However, the total elastic contribution Gf(n,n)
problems of the theory of a nematic LC. is not derived.

The two basic approaches in the physics of a nematic LC In spite of its simple form, the homogeneous kernel pro-
are the Nehring-Saupe theory and the Landau—de Gennééices serious theoretical problems. It is known to contribute
theory. In the Nehring-Saupe thedi¥], the nematic phase is !0 the surface elastic terms, isotropiciidependentsurface
described by the directar(x) alone. The director deforma- tension, anchoringanisotropic, n-dependent surface ten-
tions associated with director derivatives are assumed to Sion, and the bulkn-independent term. However, so far
be weak,l,dn<1, wherely, is the molecular length. The these contributions have not been unambiguously separated
interaction between two pointsandx’ with the directorn from one another even in the simplified case when spatial

andn’ is described by a functioB(n,n’) represented in the inhomogeneity of the surface layer is disregarded. As a re-
form G(n,n')=AG(n,n’)+G(n,n), where sult, there are no full expressions for the surface elastic

terms, no explicit local formula&.e., in form of an integral
, , converging in the surface layefor the anchoring and sur-
AG(n,n")=G(n,n")=G(n,n). (1) face tension. This problem is solved in the present paper.
In a nematic phase, the effective pairwise potential
The surface is, however, missing in this approach since i6(n,n") depends on the modulusof the separation vector
essentially presupposes that the local symmetry in the vicine=x"—x and threen-dependent scalarsn{n’), (n-r), and
ity of any spatial point inside the nematic body is then- (n’-r). Then, in general, one has
metry of infinite nematic mediurBy virtue of this symme G )= Gi[(Nen’).r ]+ €G,[(nn').(ner).(n'-1).r].
2

)

*Email address: pergam@i.kiev.ua whereG; is the isotropic fractiorfdoes not depend ar) and
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G, is the anisotropic fraction of the interaction potentials  these terms are derived. Section IV presents the total expres-
a dimensionless coefficient showing relative magnitudes o$ions for different energy terms. Section V is devoted to
the two fractions. This separation is essentialGasand G,  establishing a relation between the differetcg—K,,, the
lead to qualitatively different effects. In particul&@, alone  form of the intermolecular potential, and the scalar order
gives rise to theK,; term and intrinsic anchoring.e., an-  parameters. Section VI gives a brief resume of the obtained
choring induced by the interaction between nematogen molkesults.
ecules. Thus, ife=0, then no problems associated with the
spatial boundedness arise. [l. GENERAL FORMULAS

The standard idea is thatis of the order of 1: examples
are the induced-dipole induced-dipole, and Gay-Berne poten-
tial. In this and in a wider physical context, it would be
highly desirable to get an independent indication as to how Here we incorporate spatial variations of the dengity
large an anisotropic fraction of the intermolecular potentialand scalar order parametegisin the macroscopic approach
can be. The hope to get such information has driven us tdeglecting biaxiality. For brevity, we denote the function of a
incorporating the scalar order parameters of all orders. Thigrimed argument by the function with prime. Then the en-
proved to be fruitful: the reliably observed differeng,  €rgy of a pairwise interaction of particles with orientational
— K4, between the bend and splay elastic constants is foungoordinatesw and spatial coordinateshas the form
to be proportional tae and occurs only for nonzero scalar

. . 1

order parameters of orders higher than two. Sikgg— K, E= _f dx dx’f dwdw’ gwg', 3
is considerable in known nematic LCs, this shows that the 2
anisotropic interaction in nematogens is appreciable, and the _ . . . L
problem of surface-induced elastic terms and intrinsic anyvrlereg—g(x,w) 'i the one,-partlcle d'St,”bUt'pn functl_on,
choring is indeed physically meaningful and practically im- "~ Y92 where U=U[e - o',(r-@)(r -'),r] is the mi-
portant. croscopic pairwise interaction po.te.ntlal, aggl is the pallr

The phenomenological Landau—de Gennes theory consi orrelation function t_hat can <,axpl|c:|t|y depe/nd grandx
ers smooth variations of and the single scalar order param- 1rough the functions p, p’, » and 7', ie. g

— ! ! I H '_
eters,. In this paper we develop a microscopic theory that_ 9,[’2[“:;" (r "‘;z(r @)1 XX ]t. ?Oth U;”(;jg? aredlnvarél
along with smooth director variations incorporates bothNt UNAer simultaneous permutationsoanda:, andx an

!

smooth and jumplike variations of the density and scalaf
order parameters of all even orders. As a result, we obtair]1
microscopic formulas for all constants entering the macro!
scopic theory. In particular, the results throw the light on the p(X)
origin of prediction of the Landau—de Gennes approach that g(n- w,x)=4—[1+(2l +1)5(X)Py(n-w)], (4)
the differenceK ;33— K, does not appear in the ords% (for T
the most recent publications, see Rdfb4,15). It is also  where the summation over repeated indices is implied. The
shown why the term linear is,, which can be, in principle, function s(x) is considered as theorder scalar order pa-
introduced in the Landau—de Gennes theld#], does not rameter, 1=2,4,... . Since P|(n-w) contains the
actually appear. (n- w)-independent constai;(0), it is convenient to intro-

In this paper we will be following the approach of Ref. gyce the (- w)-dependent par®,(n- ) of P;(n-e) and
[11] which considers a spatially restricted body and can b?hel-dependent consta ,
generalized as to incorporate all the order parameters and
density. Another advantage of this approach is that, based on Pi(n-w)=(21+1)[P;(n-w)—P,(0)], (5)
exploiting the inherent structure and symmetry of the theory,
it drastically simplifies finding general relations between dif-
ferent quantities making specific calculations of no need at
all. So are the results of this paper: they are obtained as
general relations using known results of the Nehring-Saupe Then, substituting Eq4) into Eg. (3), one has
theory and the simple forrfiL1] of the so-calledK ;5 cancel- _
lation. Separating different energy terms from each other is E=1+FstFortFoa ™
achieved by means df method which is developed in this where
paper and, similar to the approach of REf1], does not 1
involve specific calculations. _ - P A /

The paper is organized as following. In Sec. II, the gen- = 2f dxdx’ pp'(1=2pisi Fpiprsis (W), (8)
eral form of the effective pairwise potential is obtained from 1
the microscopic energy expression and some formulas of the _ T b et
Nehring-Saupe theory employed later on are given. In Sec. FA_ZJ' dxdx’ pp'sis AGu, ©
[ll, the A method is introduced which allows for separating
the elastic, anchoring, and other energy contributions of the
pairwise potential of Sec. Il, and general expressions for

A. The energy of pairwise interaction in a uniaxial
nematic body

In a uniaxial phasg=g(n - w,x) that can be expanded in
e even order Legendre polynomidds,

1 -
pFEf doP/(n-w)=—(21+1)P(0).  (6)

l !
Fo,lzzf dxdx’ pp's;s;,[Gy-(n,n)—2p;:G], (10
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missing. For this reason, the only director-dependent contri-
Fo,zzf dxdx’ pp’sG; . (1) bution to Eyg comes from the kernedG. Indeed, the inte-
gral fdx’ G(n,n)=[dr G(n,n) is an n-independent con-
Here(---)=1/(4m)%[dwdew’ ..., and thekernels have stant as the scalanf) =1 is the only one composed af
the form In order to obtain the elastic free enerfyE) in a local
3 5 form the pairwise potential is expanded in a power series of
Gy(n,n")=(P|(n- w)WP;,(n" - ")), (120 the componentan;(x,x")=n; —n; of the director rotation
vector up to the second order; the differente; is in turn
AGy/(n,n")=Gy«(n,n")=Gy.(n,n), (13  expanded in a power series of the vectakx
_ =r: Anm(x',X)=r;d;n+3r;rd5n/ . The result is the
Gi(n,r)=(Pi(n- w)w). (14  Nehring-Saupe elastic FE densitys in the form

The explicit symmetric dependence vrandx’ is not indi- 1
cated here for simplicity. The kern€l, appeared first in Ref. st=§f drAG(n,n’) (16)
[11]. Separating isotropic pave; and anisotropic pamyv, of
the effective interactiomv and the kernel$12) and(14), one

the =3 (Kyq f1at Koo f oot Kaafag) —Kosfout Kigfyg

with the standard infinite medium quadratic FE termg

W=Wi(@-@',1)+ ey (0 '),(1- @)(r-o').r], given by the formulag7]

Gy (n,n",r)=Gy, ;j{wi}|(n-n"),r)

+ €G||’,a({Wa}|(n.n,)!(n.r)1(n,.r)ar)a
(15)

f11=(V-n)%  fu=(n-Vxn)?
f33=(n><V><n)2, (17)

Gi(n.1) =Gy ;({WiHr) + €Gy a(fwal | (n-r).1), f20=V-Tou,  115=V-M1s,

where the curly brackets imply a functional dependence Othere, for the later convenience, we introduced the vectors

the argument. Note, that in E¢B) the integration domains
over bothx andx’ are not indicated which implies thenre-
stricted space R The actual restriction of the integration to
the body volumeé/ and the presence of a surface and defects
are related to the spatial behavior@ands,. The densityp
does not vanish only inside the body, foe V, so that the
integration is cut fox ¢ V or, equivalently, foxe R3\V (the

fo,=n(V-n)—(n-V)n, (18
f13= n(V n).

The five elastic constant§,; can be expressed in terms
of the four integralk®), a=1, 2, 3, andK 5 [7],

aa?

total three-dimensional space minus the volunihe sur- _ (0 ()
. . Ki1=Ki7—2K13, Kiz3=K33+2Ky3, 19
face S can be naturally associated with the layer where the e 13 33 s 13 (19
density varies from its bulk value to zero. The order param- 0
Ka=K5Y,

eterss, vanish outside a nematic phase thus indicating both

the surface and the space occupied by a nematic phase. )
Our task is to calculate elastic, anchoring, and all other K= (K3 + Ky /4. (20

contributions to the total energly from the integrals(8)—

(12). Before performing this, we will briefly give the main

results of the elastic theory of an unrestricted nematic body .

in the form instructive to our following consideration. K13:§J dr ryra(9Ga/dny)n —n=(0.01): (21)

We will only need the formula foK 3, i.e.,

B. Main results of the elasticity theory for an unrestricted

nematic body (Nehring-Saupe theory It is important that the source &f;3 is solely the anisotropic

_ ) _ fraction of G [as (9G; /an}), —ncn;=0], while K©) comes
The Nehring-Saupe theory is essentially the theory of afrom both fractiong7].

unrestricted body. It considers the energy of pairwise inter- \we will also need some properties of the term in the ex-

action in the form pansion ofAG which is linear inAn; . First, it was shown in
1 Ref.[11] that the kerneA G and the antisymmetric part of its
ENS:_f dxf dx'[AG(n,n")+G(n,n)], anisotropic fractionAG, —=3€[AG4(n,n")—AG,(n’,n)]
2)v produce the same contribution to this linear term. Second,

. ) . i ) ) the part of this term
whereAG is defined in Eq(1). The integration domain over

x' is the unrestricted space Rrather than the volume V 1 IAG
This implies that the symmetry in the vicinity of each paoint Fl:if dr —rja;n;,
is the symmetry of infinite medium, and thus the boundary is an,

(22)
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linear in the director derivatives, identically vanishes as the ) )

integral is overR®. We will show that in the presence of a J dx dx AP77|G|:—f dxdx” ApmAG,
surface both integralgdr G(n,n) and F; produce elastic

ternjs_ linear in the director derivatives, an(_JI the first one, in +f dx’ dx(—Ap) 7! G
addition, results in a standard surface tension and anchoring.

:_J dXdX’(’l]|ApAG|
Ill. SEPARATING DIFFERENT ENERGY TERMS IN
INTEGRALS (8)—(11): THE A METHOD +Apn G +ApAnG),

A. The A method where we permuted all primed and unprimed quantities, em-

. . . ) . ployed the identityn =A%+ 5, and changed the integra-
The differenceAG in the Nehring-Saupe calculations is tion order. Equatior(24) follows directly from the last for-

related to the director rotation between two spatial points,, ja. Derivation of Eq(23) is similar, with the difference
separated byAx=r and thus is associated with the director {5t the quantityG, . (n’,n')—G,.(n,n) in the sum ove
derivatives and elasticity. In a homogeneous body, there argnq|’ is equivalent to twicA G, defined in Eq(1). Equa-
no other nonzero variations, but in a body with a surface angions (24) and (23) have the desired form as both right-hand
defects, the differenceshp=p(x')—p(x), As=s(x')  sides are quadratic i.

—s(x), andA 5= 7 (x") — (), wheren = ps, indicate For an example, let us give the form of the function
location thereof. For instancép in the integrand indicates Ap(x,x’) in quite a general case when the density at the
that this integral gives rise to a surface term as the integranslurfaceS has first a jump from zero tpg, and then slowly

is nonzero just in the surface layeXpAG andA7AG in-  goes fromps to the bulk valuepy, i.e., p(xX)=ps+ p(X)
dicate a surface elastic termpA » and A p? indicate a sur- wherep(x)— pp— ps in the bulk, and|IM<?7>|<l. The anti-
face tension including anchoring; oindicates a nonelastic symmetric functionA p(x,x’) has the form

bulk term. This method will enable us to unambiguously

separate all possible energy terms and solve the problems p(X)=pstp(x), X eV,xeV;

described in the Introduction. ~ ,
Obviously,A’s can enter the integrands of Eq88)—(11) Ap(x.x')= —p(X)==ps=p(x), xeV,x'e&V;

via the identitiesp’ p=p*+App, 7/, m=n m+An 7, Ap(xX' x)=p(X')=p(x), xeV,x'eV;

and n/p=mnp+Anp. A more elaborated procedure is, 0, xeV.X ¢V,

however, required to properly incorpord®g, andG,. The (25)

matter is that along with the term independentAai, the
function G(n,n) contains elastic terms linear and quadratic In the surface layer, the order parameteand, thus, the
in the separation vectaixdn. As eachA is connected to product 7 are assumed to behave similarly: in the
some degree of smallness, expressions contai@ifig,n) body Sl(X):Sl,s+§|(X), m(x)zmlsjﬁ]l(x), where 7, 5
should be somehow reduced to the form quadratic in the_ =

. . ) =psSi s 77|=s|ps+ﬁs|,s+§|7), and’s, is a slow function
operatorA. This program can be realized by using the for- equal tos| ,— s, 5 in the bulk far from the surface. The anti-
mulas i '

symmetric function@ s;(x,x") andA ,(x,x’) have the form
similar to Ap(x,x").

As Ap(x,x"), EQ.(25), is nonzero when one of the points
x" andx is outside the body, the director must be formally
defined outside the volumé. We will see that the physical
results are independent of the specific form of the director
extension outside the phase boundary.

f dxdx’ A7 [Gy/(n,n)—2p,G] (23)

1
= — Ef dXdX,[27]|A 77|/(AG||/_p|/AG|)
B. Separating anchoring, surface tension, and surface elastic
+AnpA (G (n,n)—2p; G, terms in the A method

Above we assumed that integrals ovérpAp and
1 AnAmn,, Egs.(23) and(24), produce an anchoring and sur-
, __ = / face tension and do not produce elastic terms. Actually, how-
f dxdx” ApmGi= 2f dxdx’(mApAGI+APAMG). ever, separation of these three different surface terms is an
(24)  unsolved problem. Here we show how themethod solves
this problem.
To deal with surface integrals related to a surface jump
Let us derive the second one. Introduci®g—G,, which  p, 5 and/ors g it is convenient to use a local Cartesian ref-
coincides with the definitiol) of AG by virtue of Eq.(14),  erence frameD,,, (X1X,Z), connected to a point on a
and substitutings; =G/ — AG, one has surface elemend S and the local outer surface normal In
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0,,, thezaxis is normal tad S, directed inward the body, and o~ o~ ,
has the onset at, the x; axis is tangential talS and lies in ls= de v dr’ AnApGst27sps de ) \de Gs.
the plane made by the normaland surface directong(x) ' * (29)

while the x, axis is normal to this planex=(x; X,,z=0),

v=(0,0,—-1), andng(x)=(n4,0,n3). Clearly, z>0 in the The firstintegral, which obviously represents the surface ten-

body andz<0 outside. _ _ sionS and anchoringA of a pure diffusive surface, can be
Let us calculate a surface tension and anchoring assodl o simplified. By virtue of the definition G(2) and

ated to the functiona »Ap defined in Sec. lll Althe sub- < P o y ) ]

scriptsl andl’ may be dropped for simplicily the case of  7(2), EQ.(25), its integrand vanishes ddand remains very

A A, is similar. One has small at distances-Iy froLn 91 Then the principal contribu-
tion to the integral oveA nAp comes from the part of the
G(n(2))=Gg+25Gs, (26)  surface layer not very close t8 so that ther-integration

domain can be extended R, and this integral reduces to

where Gs=G(ng), 8Gs=(dG/dN;)n_n(aN;);—0, and the ~ the form
dependence on,r,r, is omitted for brevity. Besides a sur-
face tension, on theintegration Eq(26) can also give non- f dx g, n(?jpf drrir;Gs. (29
zero terms with the normal-to-surface director derivatives v
[12,13. The advantage of ouA method is that they are
already separated from the anchoring terms: we will now
show that the integral contribution abGg is zero.

Consider the integral under question in Eg4) and di- j drrir;Gg=d; 6 +dzn; gnj s. (30
vide the integration domain as follovjsee Eq.(25)]:

The tensor structure of theintegral allows one to write

Since the constantd; andd, are director independent, we

choose the reference frame where(0,0,1). Then fori
Is=f dxf dx’ ApApG =j=1 one obtains
1 2
dl:if dl’ r]_G|nS=(0YO'1). (31)

=J de’ dx’ ApApGgs+ nspsf dxf dx’' G
\Y \% v R3\V

dXJde’ G. (27)

d, can be calculated by setting=1, j=3, and differen-
tiating both sides of Eq30) with respect tan,,

+nspsf
| K!l5,G=G,
2:

Ra\V

by (32
In the first integral we neglectetbGs~A7ApAn; in the K!3 + Kllg G=Gy,
remaining two integrals, the smooth functions with a tilde " | )

are neglected compared to the surface jumyps which ~ WhereKi; andK;; are the Nehring-Saupe consta@t) for
dominates whem’ or x is outside the body, Eq25). Itis not ~ kemnelsG, andG,., respectively. o

difficult to show that the contributions of the derivative de-  From Eq.(29) we see that for a pure diffusive surfack,
pendent termz5Gg to the last two integrals cancel each determines the isotropic tensiaiy while d, determines the
other. To this end, we first note that only those termé@y, anchoringAg,

which are even im3, do not vanish after integration over the

surface layer. Indeed, in the reference fralgeboth G5 and ~

5Gg are the sums of termgSPe" POWek p§ven POWer gng 26= _dl{G}J dx(Vp)- (V). (33)

rgdd powes, podd power The |ater terms vanish after integration

over the spatially unrestricted tangential component ~

Hence one can consid&g and 6Gg to be functions ofr 3 Ac=—dx{€Ga} | dx(ns:Vp)(ns V), (34
=(z'—2)?, n3, andn?=1-n3. Then, under the variable _ _
changez’=—2', z=-z, the second integral overdGs  Where the functional dependencedafandd, on kernelG is

immediately reduces to minus third one. Thus, the elastiéndicated. In these equatiop=Vp and V7=V since
term z6Gg does give a zero contribution to integre??) the jumps are separated and do not contribute to differentia-
which justifies theA method: those integrals, whose inte- tion. Note that whereas the constaht, Eq. (31), comes
grands contail\ 7,Ap andA A 5., up to negligible terms  from both isotropic and anisotropic fractions Gf the con-
give rise to the anchoring and surface tension alone. Belowtantd,, Eq. (32), coincides with the constar€;; whose

we derive general formulas for these nondeformational termsource is the anisotropic fraction alordyxe.

for a given kernelG. The second term in Eq28) represents the anchoriry
In the context of the above consideration, integi2l) and surface tensiod; at sharp surfaces with a nonzero jump
reduces to (ps))s- An isotropic kernelG;(n-n) does not depend on the
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director as (-n)=1. In contrast, the integral over an aniso- While the densityf 5 is absen{9-11]. The total coefficients
tropic kernelG,(n,n) is a function of (- ng)? which reduces K3 andK,, in a restricted nematic body have other sources
to n3 in O,,.. However, as in the case of a diffusive surface,and will be found below.

the kerneIGas also produces some director-independent Applying the A method, the integral10) can be reduced
term contributing to the |sotrop|c tension. Namely, thoset0 the sum

terms inG, s that do not conta|m3, cannot contribute to
anchoring. Th6363 mdependent terms can be obtalned from Fo,

Gas, in which nl 1- n3 and n,=0, by settingn;=
Therefore, the surface tension results frdm,s(ng—O)
=G, dNns=(1,0,0)] while the anchoring results from the
rest ofGaS, i.e., fromG, s— G, s(n3=0). Using this recipe
and z integrating by parts the second term in Eg7), one
obtains the surface tensid; and anchoringdg induced by
a surface jump opg and 7g,

2ea= _Psﬂsf de dzz
0

X f_ drydry[Gi st €G, s(N3=0)]r -,

(35
AG,J:_pSWSEJ dSJ dzz
0

|

wheren?=1-n3 andn,=0. Note that these integrals con-
verge in the surface layer.

drl er[Ga,S_ Ga,S(n?,: 0)]r3=7

C. Calculation of integrals (8)—(11)
The first terml, Eqg. (8), in the total energy7) results in

the director-independent bulk term and surface tension, an

its calculation is trivial. Further, integrdb) reduces to the
form

1
FA:EJ dXdXI(7]| 77|rAG||/+ 7]|A77|rAG||r‘_). (36)

The internal integral in the first term in EQ36) is exactly
the Nehring-Saupe densif)',{]’S (16) for the kernelAGy;: . In
the second termA G, is replaced by its antisymmetric part
AGy, _ which is equivalent to neglecting contribution of the
orderr?(gn)2~Ax?An?, Sec. Il B. This term reduces to the

form (22) and can be calculated following the method of Ref.

[11]. Finally, the sum of the two terms in E(B6) takes the

form
1
FA:J ax g ;|5

I
2K

aa aa

— —(K“2+K Dfal, (37

whereK!!’,
for the kerneIAG”, .
the elastic density resulting fromG,, is that the constant
Koa=3(Kyp+K(9), Eq. (20), changes for:(Ky+Kyy),

l
f dxdx’ (g + mAn )Gy (n,n)—2p;G].
(39

The integral ovem, »,, is n independent and proportional
to V, Sec. II B, and can be simplified by using formula

f dr G,=p,jdr(w).

The 7A 7, term is similar to Eq(9) considered above and
can be calculated in the same way. This gives

(39

(Kgs:_Pl'Klm)J'dX77|7I|'(f13_%f24)+21+A1, (40)

where the isotropic tensio; and anchoringA; can be
found from general formula&5) by replacingA 7,Ap with
A77|A7]|r andG W|th (G||r_2p|rG|).

Integral (11) can be written as

1
Fo,2:J dXJ dr[PﬂGFE(AU|APG|+77|APAG|)}-
(41)

Calculating the first term iifr( , reduces to using formula
(39). The second term can be obtained from general formulas
(35 by settingG=G, . The third term inF , looks similar
to that with A %, AG, considered above, however, it can-
laot be treated in the same way. The matter is #jat, which
now replacesy/ 7 in the integrand thereof, is not symmetric
(identity (15) of Ref. [11] breaks. For this reason we per-
formed a direct calculation d¥, , assuming thas;, p, and
7, have finite sharp jumps at the boundary and smooth com-
ponents. The smooth components are assumed to change
very little over the microscopic scale, so that the differences

Ap andA% can be approximated by the first differentials. As
a result, the third term in Eq41) is found to be

Kllsf dx[ 7p(f13— 520 +p2(Vs) - (f13— 3201 (42)

IV. THE FULL ENERGY EXPRESSION

Now we can write down the full energy expression col-
lecting the results of the preceding section. The total energy
E is a sum of the director-independent bulk teEy elastic
termF, containing the director derivatives, isotropic tension
3, and anchoringp,

are the standard splay, twist, and bend constants
The effect of spatial boundedness on

In this section we consider each term individually.
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A. Director-independent bulk term E, (17) and(18)]. In contrast to the Landau—de Gennes FE, the
constantsK ,,{G,;} are determined by the Nehring-Saupe
formulas which do not implK;;=K35. Note, that the terms
linear in the smooth componest appear only where the
density is not constant, i.e., at a diffusive surface.

The jump-induced term has the form

The director-independent bulk teriy has the form

1 '
EOZEJ prz(ao-l- ag S|S|/),

ap= | dr{w), (44) ’
0 J' (w) Fe”:f dS — (s34 mm: + 3Ki3mp) (v-f29)

a!'=f dr[ Gy (n,n)=pypi(w)]. + (ki mm+ Kigmp) (v )], (48)

wherew is the outer normal t&. The surface integral con-
tains ns=pgns and does not vanish only if both the order
cparameter and density have a finite jump.
Usual situation is that the size of a nematic body is much

Note that the bulk terms linear & though allowed by the
symmetry and present in E¢8), canceled out in the total
energy as it should be for having the correct nemati

isotropic phase transition, and the ker@l(14) is essential larger than the thicknesk; of the surface layer. Then, if

for this cancellation. By magnitude ordexy~a,~Kl,2. . . .
. . : structure of a surface layer is of no interest, one can describe
The bulk nematic phase is possible when the second term i) . i
. . S . - the observable director far from the surface using the effec-
Eqg. (44) is negative, which imposes certain restrictions on,. .
. . . o tive FE functional
possible hematogenic potentialsthus providing the selec-
tion procedure. As for the independent term in Eq44), it = = =
can be used for finding the equilibrium distribution of the Fin}=Fet+A (49

density, but this complicated problem lies beyond the tqsk 0\'(/vith effective constants that absorb the information of the
our paper(e.g., see Refl.16]). In our formulas the density surface layer. The effective surface elastic constants entering

p(x) is to be considered as a known function, and the ter . ) .

agp? gives rise to an unimportant constant. el CAN bg obtained by integrating the exact surface energy
densities in Eq(45) across the surface layéirom z=0 to

z=Ig) assuming that the director changes negligibly within

it; asV is much larger than the volume of the surface layer,

The elastic free energy is the sum of the terffqs that  the effective bulk elastic constants merely take their bulk

would be present for no surface jumps, and the jump-inducedalues. As a result, the effective bulk elastic energy of a

B. Bulk and surface elastic terms

termsF,, ;, i.e., spatially restricted body is obtained in the form
_F —_ 1 _ _ _
Fer=FertFers. 49 FelzzfvdX(K11f11+ Kazf2otKasfsg)
This sum can be obtained by summing all the elastic terms
obtained above and by part integrating those containing the =
densitiesf;; andf,,. The nonjump term has the form | dSve (= Kagf2e T Kydfag), (50
~ 1 " I I where the effective elastic constants are given by the follow-
Fei= | dx 2 M (Kyg Faat Koo ot Kz fag) ing expressions:
/ 1 Koa=mpm6K", =123
+ K24V(77| )+ §K|133IVP2 foq aa™ Mb7'baqr XL
1 - _
, Kos=—= (K14 Koyt 2K 43), (51
~Lk13V (7 77|,)+K'13S|Vp2]-f13], (46) e g (Kut Kot 2has
_ , Is
where K1s= b7 p(Kiz — P Klg) + mspsKist K|13fO dz §3,p°.
n_ I el I’
K24—Z(K11+ K5 +2k73), (47) Formulas(50) and(51) give the large scale elastic energy

of a spatially restricted body. The difference with the
Nehring-Saupe functiondt g appears in the values &,
andK,,, in the surface tension and anchoring terms, and in

It consists of the bulk splay, twist, and bend terms quathe effective status d¥¢,. The constant¥,, do not depend
dratic in the density and order parameters, and the termsn the surface structure, wheres, and K3 do. For an
nonvanishing in diffusive surface layers which, for obviousideal surface without any smooth component where the bulk
reason, can be referred to as g, andK 5 terms[see Eqgs. and surface values ¢f ands coincide, and for a pure diffu-

Ny’ [
k13=Ki3 =P Kis,
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sive surface WherBS: pszoy the Constangls is, respec- Slmllarly, the energy of anChOfinqiS the sum of the non-
tively, given by the following expressions: jump and jump-induced terms, i.&=A+A;. The nonjump
diffusive term has the form
Kiay= 716710 p(Kia = PirK1a) + 51 ppoKs, _ ,
62 A= | oK Vo) ns Vo) + k(s V)

- , Is
Kis= 77I,b77l’,b(K23_pI’KI13)+K|13f0 dz §9,p%. X (ng- V)] (55)

. . Its conventional form is found to be
The last integral can be estimated K$,s,(p?)s where

(p?)s~0.50?2 is some mean value in the surface layer. The - 1

similar contribution due to the kern@,(n-r) was obtained A= EJ dSWn-»)?, (56)
in Ref.[11]. We see, however, that in line with the numerical

analysis[13], the full expression for the elastic constht; Is ,

does not reduce to this term alone and contains more contri- W= —ZJ dZ[K|13((9zp)((9z77|)+ K23((9z77|)((9z77,,)].
butions from the apparently “nonelastic” homogeneous ker- 0

nels. For instance, the kern@), gives rise to the two other (57)

contributions toK 5 (51), one of which is quadratic in the A remarkable property of anchoring potentigb) for a pure
order parameters. . diffusive surface is that it has exactly the Rapini-Popoular
The contributionz;, 7;:,K 13 in Kyz (52) is produced by  form and its strengtiW is proportional to the constant€),

the homogeneous kern@;(n,n). It coincides with the na- - 4nq, I given in Eq.(47). Thus, for a diffusive surface the
ive infinite medium Nehring-Saupe consta@t) that disap-  ¢act that the constank 5 and intrinsic anchoring are ob-

pears in the ela“stlc e_n?rqw) of a spatially restricted b(_)dy tained due to the same anisotropic interaction is expressed
if just the pure “elastic” kernelsAG,;» andAG, are consid- explicitly.

ered. Therefore, the homogeneous kei@gl(n,n) restores The jump-induced surface nonelastic energy is also a sum

the infinite medium contribution to thi€ 5 term. of the surface tensior®,=/dSo, and anchoringA,

=JdSf, 5(n-»). In the reference fram®,,, the densityo;
C. Surface tension and anchoring is found to be

The general formulas for the isotropic surface tension and 1 Is "
anchoring were obtained in Sec. lll B. The total energy of the g3=— _pgf zdz| drydr,Gs j(rg=-2),
isotropic surface tension is the sum of the no-jump t&m 2 0 -

j -i ie,2=3+%;. i i
and jump-induced ternk ;, i.e., 2 =3 +3;. The diffusive Gs.y= (W) — 25 Py (W)~ Gy(M]n o (58)
part> has the form
-1 +5i8[ PP (W) + Gy (n,n) = 2 Gy (N) ], —o-
5= ooV bV ) (Vp)
fa j has the form

+b3 (V) (V)], (53

’ 1, ('s
fAJ((ns'V) )=__pS€J ZdZ
, 2 0
where

1 ) Xj drydry[Ga 3= Gas(ng=0)]r - 7,
b0=—§f dr ri{w), -
(59

b'l=—f dr rf[G|(n)—p|(W>]n:(ovo,1), (54 Gaa(N)={25//G atsi5/[Gy7 a(N,N) = 2P/ Gy al}s-

In contrast to the universahg-»)? form of the anchoring

" 1 ) potential for a diffusive surface, the power afg- »)? in the
by =- Ef drri[Gy;-(n,n)—2p;,Gy(n) jump-induced anchoring potentié ;, Eq. (59), depends on
the power ofn, in the anisotropic part of the kerne®,» and
+ PP W) n=(0,0,1)- G,.

Equationg53) and(57) show that the surface tension and
All b's ~K. The energy(53) can be represented in the anchoring for a diffusive surface are of the orderW

conventional form® = [dSo with the surface density de-  ~Ki3/ls. At the same time, the jump-induced quantities
fined by the expression in the square bracket in®8) (in o ;~f, ;~Ky3/ly, which is larger by the factdrs/l . We
the reference fram®,,,V is replaced by,). see that the anchoring and surface tension depend on the
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structure of the surface layer and, roughly speaking, are insource of the constait;; and intrinsic anchoring; and, as far
versely proportional to the thicknesg thereof. Thus, the as the orientational one-particle distribution function is con-
anchoring is weaker at a diffusive surface and is strongest aterned, a nonzer&;;—K,; is obtained due to the scalar

a pure ideal surface with a large jump of the density andrder parameters of the orders higher than 2. This conclusion
order parameters. At the same time, the effective constaman be expressed by the following formula:

K13, EQ. (52), averaged across this layer is practically the
same for any surfacéhe reason is that thi,; density de- Kas— K= €(A 548,84+ A44sﬁ+ S, (61
pends on the first derivative pfor » whereas the density of
anchoring and surface tension depends on the square of su\% _ :

o . S ereA,,=Ks3(G —K11{Ga24, and so on. This result
derivatives, see also RefL7]). The above consideration, in implies tzr?at tﬁizjié}rm iSllI{BJS(E;Zé}UG to a nonzeoIndeed.
particular, implies that the effects related to ®ig, andKy; it is known that the total elastic coefficient of tkg, terma is

terms should be expected in samples with diffusive surface B )
Indeed, the size of such samples is determined by the anchc?f;;:11 2K24[12,18]. Then Eqs(5D and(61) show that an

ing extrapolation length18] that takes macroscopic values tecr):;(;plf%rp;o:t%ntlgln éSths(oufi Gﬂ_l ;I:(e Sznglng efinite FE
only if the anchoring is weak. ) ’ 187 M1 24 )

It is known that the Landau—de Gennes theory assumes
the order parameter to be of the foi@; :sz(ninj—%éij),
V. MICROSCOPIC ORIGIN OF THE DIFFERENCE directly related to the Legendre polynomR} [21]. As this
Kaa~K11 AND THE SURFACE PHENOMENA corresponds to incorporating a single-order paranmtethe

The Landau—de Gennes theory predicts that, in the orddprmula (61) shows that prediction of a nonzero difference
s2, the constant&,; andK 3 are equal which is not in line Kas—Kuz should not be expected of this approach. Contrary
both with the numerous experiments and Nehring-Saup#® that, to be consistent, the Landau—de Gennes theast
theory. In literature on the Landau—de Gennes theory, anaredlctzeque}l constant$s; andKy, as it indeed does in the
the most recent related papéfst,15 are not an exclusion, orders;. This demonstrates a high self-consistency of this
the observed differenck;3— K4, is attributed to the orders theory in the ordes5: being pure phenomenological and not
s and higher which is not confirmed by the experimentalresorting to microscopic formulas, it predicks;=Kss in
findings. Our theory enables one to clarify this questionaccordance with the result of the microscopic theory. To
Moreover, we will see that addressing this problem gives ugnake the picture complete, we note that terms cubgido
an important(and somewhat unexpectedonnection be- Not change the elastic energy. Indeed, the energy(3gis
tweenK3— Ky, the amplitudee of the anisotropic fraction duadratic in the one-particle distribution function, and thus
in the intermolecular potential, and values of the higherterms s3 come from the entropy functional which is
order scalar order parameters. n-independent.

We prove the following two assertions. The first one is Now we can answer the question formulated in the Intro-

duction as to how large the anisotropic interaction in a real
K=K, (60)  system of nematogenic molecules is and, consequently, how

. . . i important the elastid 5 term and intrinsic anchoring are.
WhICh means that, _for_an arb|trary !ntefm0|ECU!ar potential  The clear message that reliably observed considerable values
restriction of the distribution function to the simplest scalar ¢ e differenceK 55— K1, convey us is that the anisotropic

order parametes, alone results in the equalitf,;=Ks3.  fraction of the intermolecular potential is of the same mag-
Indeed, as far as the constamls, andKg; are concemed, pjyde as the isotropic one, and hence kg elasticity and
the restriction to |=I"=2 implies dealing with the jntrinsic anchoring are an important integral part of the phys-

kernel G,y (n,n')=(P,wP3) where P,=%¥(n-w)?, P, ics of LCs.
=2(n'. w)? [G, does not contribute t& ,,,, see Eq(37)].

The kernelG,,, being quadratic im; andn{ , is a sum of the

following invariants:n-independent constaffunction onr),

(n-n")2, (n-n")(n-u)(n"-u), (n-u)®+(n’-u)?, and A nematic body is not entirely spatially homogeneous: its
(n-u)?(n"-u)?. All these invariants result inKs;3=Ky;  density and order parameters undergo spatial variations in
which proves the first assertidoalculation of the constants comparatively small areas of the space. This paper presents
is trivial if one uses the well-known formulas expressing thethe full energy of such a uniaxial nematic body expressed in
elastic constants in terms of the powers of the elementarferms of the macroscopic order parameters and derived from

VI. CONCLUSION

invariants @-n’), (n-u), and (0’ -u), see Ref[19]). the general microscopic formulas. The theory assumes both
The second assertion is that a pure isotropic interactiosmooth and jumplike spatial inhomogeneities.
W (- ®')?], k=1,2,..., cannot give a nonzerdg; No usual assumption was made as to which kernels in the

—Ky;. Indeed, for anyt andl’, the kernelG,;, is a sum of  pairwise potential give rise to elastic terms and which do not.
even powers of If-n’). But the term (-n’)?¢ results in  Instead we developed th® method that allows for an un-
K33=Ky4 for anyk, which proves the second assertion. ambiguous separation of different macroscopic energy con-
It follows from the two facts proved above that, as far astributions, relating them with the spatial variations of the
the interaction form is concerned, a nonzéfg;—K,, is  order parameters. As a result, full expressions for all the
obtained solely due to an anisotropic interaction that is alastic terms, including thi€,; andK,, terms, were derived.
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The result simplifies calculation of the anchoring potentiaI,E13 and @4 differ from the Nehring-Saupe values for any
reducing it to the procedure similar to the calculation of thesuyrface structure. In contrast to these constants, the strength
elastic constants. of anchoring considerably depends on a surface layer: for a
Incorporating all the scalar order parameters allowed fothick diffusive surface layer it can be much smaller than at
finding an important relation between the higher-order scalagharp surfaces. This gives a clue for understanding why an
parameters and the observed differefcg—Ky;. It indi-  intrinsic anchoring can be weak even if the anisotropic part
cates that at least sonsgwith [=4 and the anisotropic part of the intermolecular potential is considerable.
of the intermolecular interaction must be considerable in a Finally, we believe that the approach developed in this
nematic phase. This allowed us to conclude that the elastipaper can be generalized for derivation of the energy of a
K13 term and intrinsic anchoring are an important integralbiaxial phase in a system of uniaxial molecules from the
part of the energy of a nematic phase. The effective constantaicroscopic formulas. This task is under way.
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